合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 4種油醇烷氧基化物平衡和動(dòng)態(tài)表面張力、潤(rùn)濕性、泡沫性、乳化性質(zhì)研究(一)
> 強(qiáng)紫外線輻射對(duì)減縮劑抑制水泥石干縮變形效果研究(三)
> 濕法制粒的工藝過程
> KibronLB膜分析儀研究自組裝肽在制造定制螺旋狀納米結(jié)構(gòu)中的應(yīng)用
> 原油中活性物質(zhì)與堿作用下對(duì)界面張力的影響
> 固體、鹽溶液表面張力測(cè)量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 平面流動(dòng)皂膜表面張力系數(shù)、厚度和流動(dòng)速度實(shí)驗(yàn)裝置及測(cè)量方法(二)
> 湍流飛濺與表面張力兩者之間有何關(guān)系?
> 桐油基衍生物鈉鹽的表面張力、CMC值測(cè)定、乳液穩(wěn)定性、固化膜性能測(cè)試(一)
> 表面活性素制備、分離純化、溶液表面張力測(cè)定及膠束化行為研究(二)
推薦新聞Info
-
> 泡沫酸液表面張力調(diào)控與無機(jī)礦物溶蝕解堵特性研究(三)
> 泡沫酸液表面張力調(diào)控與無機(jī)礦物溶蝕解堵特性研究(二)
> 泡沫酸液表面張力調(diào)控與無機(jī)礦物溶蝕解堵特性研究(一)
> 烷基化碳量子點(diǎn)表面活性劑合成改性、表面張力、穩(wěn)泡及乳化性能(三)
> 烷基化碳量子點(diǎn)表面活性劑合成改性、表面張力、穩(wěn)泡及乳化性能(二)
> 烷基化碳量子點(diǎn)表面活性劑合成改性、表面張力、穩(wěn)泡及乳化性能(一)
> pH調(diào)控豬血漿蛋白納米顆粒的界面吸附行為與乳液穩(wěn)定機(jī)制(五)
> pH調(diào)控豬血漿蛋白納米顆粒的界面吸附行為與乳液穩(wěn)定機(jī)制(四)
> pH調(diào)控下豬血漿蛋白熱誘導(dǎo)納米顆粒的制備、表征及其穩(wěn)定Pickering乳液性能(三)
> pH調(diào)控下豬血漿蛋白熱誘導(dǎo)納米顆粒的制備、表征及其穩(wěn)定Pickering乳液性能(二)
溫度、截?cái)喟霃健⒛M分子數(shù)對(duì)水汽液界面特性的影響規(guī)律(二)
來源:河南化工 瀏覽 1310 次 發(fā)布時(shí)間:2024-11-28
2模擬結(jié)果與討論
2.1溫度對(duì)密度分布的影響
在模擬分子數(shù)N=256和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時(shí),模擬得到的密度分布如圖3所示。統(tǒng)計(jì)得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d如表2所示。由圖3及表2可見,汽相主體密度和汽液界面厚度隨溫度的提高而增加,而液相主體密度隨溫度的提高而減小。
液相主體密度與汽相主體密度之差(ρL-ρV)與溫度T的關(guān)系如圖4所示。可見,液、汽相主體密度之差隨溫度的升高而降低;從理論上講,在臨界點(diǎn)處,其差值應(yīng)該趨近于零,這與圖3所示的規(guī)律一致。液、汽相主體密度之差與溫度的關(guān)系可以擬合成式(14)的形式。
式中水臨界溫度Tc=647.3 K,利用表2數(shù)據(jù)對(duì)式(14)進(jìn)行擬合,得到參數(shù)ρ0=1545.8 kg/m3,指數(shù)因子x=0.5516。
2.2溫度對(duì)界面張力的影響
在模擬分子數(shù)N=256和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時(shí),水汽液界面張力的模擬結(jié)果見表3。
圖5為局部界面張力的分布曲線(500 K)。由圖5可見,汽相主體的局部界面張力基本為零;從汽相主體向液相主體的過渡過程中,界面張力值逐漸增加,在汽液界面區(qū)達(dá)到峰值;在液相主體又在零值附近波動(dòng)。水汽液界面張力模擬值隨溫度變化規(guī)律如圖6所示。
由圖6可以看出,隨著溫度的提高,界面張力降低,模擬值與實(shí)驗(yàn)值之間的誤差逐漸減小。界面張力與溫度的關(guān)系可以擬合得到方程(15)。
將表3的數(shù)據(jù)對(duì)式(15)進(jìn)行擬合,得到的參數(shù)γ0=254.3 mN·m-1,指數(shù)因子k=1.305。
2.3溫度對(duì)勢(shì)能分布的影響
在模擬分子數(shù)N=256和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)溫度T=400、450、500、550和610 K時(shí),汽相主體總勢(shì)能UV、液相主體總勢(shì)能UL及總勢(shì)能勢(shì)阱深度ΔU的模擬結(jié)果如表4所示。圖7為水分子的勢(shì)能分布曲線(500 K),圖8為液相主體區(qū)域的勢(shì)能隨溫度的變化趨勢(shì)。
圖8液相主體區(qū)域的勢(shì)能隨溫度的變化趨勢(shì)
前已述及,水的勢(shì)能分為L(zhǎng)-J勢(shì)能和靜電勢(shì)能。由圖7可以看出,L-J勢(shì)能均為正值,在液相區(qū)形成勢(shì)壘,勢(shì)壘高度ΔULJ為液相主體L-J勢(shì)能與汽相主體L-J勢(shì)能之差;靜電勢(shì)能均為負(fù)值,在液相區(qū)形成勢(shì)阱,勢(shì)阱深度ΔUe為汽相主體靜電勢(shì)能與液相主體靜電勢(shì)能之差;由于靜電勢(shì)能起主導(dǎo)作用,總勢(shì)能也為負(fù)值,同樣在液相區(qū)形成勢(shì)阱,分子之間主要為吸引作用。從圖8可以看出,汽相主體勢(shì)能作用不明顯,勢(shì)壘高度隨溫度升高而降低,液相主體勢(shì)能的勢(shì)阱深度隨體系溫度的升高而減小。
2.4模擬分子數(shù)對(duì)模擬結(jié)果的影響
在溫度500 K和截?cái)喟霃絩c=0.9498 nm的條件下,當(dāng)模擬分子數(shù)N=108、256、500和864時(shí),模擬得到的密度分布見圖9。統(tǒng)計(jì)得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d見表5。
圖9水分子數(shù)對(duì)密度分布的影響
表5不同水分子數(shù)下界面性質(zhì)的模擬結(jié)果
由表5和圖9可見,隨著模擬分子數(shù)的增加,液相主體密度有所增加,液相主體區(qū)域?qū)挾燃哟螅航缑婧穸壬杂性龃螅嘀黧w密度有所波動(dòng)。
2.5截?cái)喟霃綄?duì)模擬結(jié)果的影響
在溫度為500 K和模擬分子數(shù)為864的條件下,當(dāng)截?cái)喟霃絩c=0.7915、0.9498、1.2660 nm時(shí),模擬得到的密度分布如圖10所示。統(tǒng)計(jì)平均得到的汽相主體密度ρV、液相主體密度ρL及汽液界面厚度d如表6所示。從表6和圖10可以看出,隨著截?cái)喟霃降脑黾樱合嘀黧w密度增大,汽相主體密度減小,汽液界面厚度變化不大。
3結(jié)論
采用SPC模型,對(duì)水汽液界面特性的分子動(dòng)力學(xué)模擬研究結(jié)果表明,隨著溫度的升高,汽相主體密度增加,汽液界面厚度增大,液相主體密度降低,界面張力逐漸減小,液相主體區(qū)域勢(shì)能的勢(shì)阱深度也逐漸降低。隨著模擬分子數(shù)的增加,液相主體密度增加,汽液界面厚度稍有增大。隨著截?cái)喟霃降脑黾樱合嘀黧w密度增加,汽液界面厚度變化不大。





