<label id="49scj"><menuitem id="49scj"></menuitem></label>
<del id="49scj"><dl id="49scj"></dl></del>
<th id="49scj"></th>

  • <b id="49scj"><abbr id="49scj"></abbr></b>
    <kbd id="49scj"><form id="49scj"></form></kbd>

    1. <th id="49scj"><progress id="49scj"></progress></th>

        芬蘭Kibron專注表面張力儀測量技術(shù),快速精準(zhǔn)測量動(dòng)靜態(tài)表面張力

        熱線:021-66110810,66110819,66110690,13564362870 Email: [email protected]

        合作客戶/

        拜耳公司.jpg

        拜耳公司

        同濟(jì)大學(xué)

        同濟(jì)大學(xué)

        聯(lián)合大學(xué).jpg

        聯(lián)合大學(xué)

        寶潔公司

        美國保潔

        強(qiáng)生=

        美國強(qiáng)生

        瑞士羅氏

        瑞士羅氏

        當(dāng)前位置首頁 > 新聞中心

        煙道氣與正己烷對稠油表面張力的影響機(jī)制研究(三)

        來源:中南大學(xué)學(xué)報(bào)(自然科學(xué)版) 瀏覽 200 次 發(fā)布時(shí)間:2025-12-25

        2.2正己烷-稠油系統(tǒng)表面張力變化規(guī)律

        研究表明,正己烷(n-C6H14)可以有效地改善SAGD的開發(fā)效果。本文實(shí)驗(yàn)中選用的溶劑為正己烷,研究正己烷降低稠油表面張力的能力。


        2.2.1正己烷降低表面張力能力分析

        與CO2、N2和煙道氣相比,正己烷在稠油中的溶解、萃取作用很強(qiáng)。圖5對比了120℃時(shí)正己烷、CO2、N2和煙道氣與稠油的表面張力。用其他氣體-稠油表面張力與正己烷-稠油表面張力的比值得到的無因次倍數(shù)表征正己烷降低表面張力的能力,無因次倍數(shù)越大,表明在相同溫度和壓力條件下正己烷降低稠油表面張力能力越強(qiáng),如表7所示。當(dāng)壓力接近正己烷的飽和蒸氣壓時(shí),煙道氣-稠油表面張力是正己烷-稠油表面張力的2倍,因?yàn)榕c煙道氣相比,正己烷在稠油中的溶解、萃取作用更強(qiáng),對降低稠油表面張力作用更顯著。


        2.2.2溫度和壓力對正己烷-稠油表面張力的影響

        為了研究溫度和壓力對正己烷-稠油表面張力的影響,分別測定了100,120和140℃3種溫度下的表面張力,如圖6所示。當(dāng)溫度一定時(shí),由于正己烷在稠油中的溶解度隨著壓力的增加迅速增大,使得正己烷-稠油表面張力隨壓力增大呈線性關(guān)系迅速降低。正己烷在100,120和140℃接近飽和蒸氣壓時(shí)的表面張力分別為14.57,12.49和9.42mN/m,表明溫度越高,在接近飽和蒸氣壓時(shí),正己烷-稠油表面張力越小。與煙道氣-稠油表明張力不同的是:當(dāng)壓力一定時(shí),溫度升高,正己烷-稠油表面張力有所升高,主要是因?yàn)闇囟壬撸和樵诔碛椭腥芙舛葴p小,從而使得降低表面張力的能力降低。


        表7正己烷降低稠油的表面張力

        壓力/MPa CO2 N2 煙道氣
        0.20 1.353 1.367 1.355
        0.30 1.623 1.641 1.626
        0.39 1.969 1.992 1.974

        圖6不同溫度下正己烷-稠油表面張力變化曲線


        2.3煙道氣+正己烷-稠油系統(tǒng)表面張力變化規(guī)律

        在進(jìn)行煙道氣+正己烷-稠油表面張力測定實(shí)驗(yàn)時(shí),首先向高溫高壓容器內(nèi)加入一定量的液態(tài)正己烷,然后升溫至實(shí)驗(yàn)溫度,待容器內(nèi)壓力和溫度都穩(wěn)定10 min后,然后向高溫高壓容器內(nèi)注入一定量的煙道氣,從而得到煙道氣與正己烷的混合氣體。

        圖7對比了120℃時(shí)煙道氣、正己烷和煙道氣+正己烷3種氣體與稠油的表面張力變化規(guī)律。由圖7可見:當(dāng)溫度一定時(shí),3種氣體-稠油表面張力均隨壓力的增大而減小,但是變化的幅度不同;在低壓下,煙道氣對降低稠油表面張力作用有限,當(dāng)氣體中含有正己烷時(shí),稠油的表面張力明顯降低;在120℃和0.3 MPa時(shí),煙道氣-稠油表面張力為24.70mN/m,向煙道氣中加入50%(摩爾分?jǐn)?shù))的正己烷后表面張力為15.89mN/m,與純正己烷氣體表面張力相差不大,后者為 15.19 mN/m。前面的研究表明,煙道氣-稠油表面張力可以由 CO2-稠油表面張力和 N2-稠油表面張力線性疊加得到,但是對于煙道氣+正己烷混合氣體,正己烷對降低表面張力起主要作用,不能簡單的由煙道氣-稠油表面張力和正己烷-稠油表面張力進(jìn)行簡單的線性插值進(jìn)行計(jì)算。


        前面在進(jìn)行煙道氣+正己烷-稠油表面張力研究時(shí)固定2種氣體的摩爾分?jǐn)?shù)比為1:1。圖8對比了混合氣體中煙道氣與正己烷的摩爾分?jǐn)?shù)比分別為 1:3, 1:1和3:1時(shí)與稠油表面張力的變化規(guī)律。由圖8可知:當(dāng)壓力一定時(shí),混合氣體中正己烷含量越高,表面張力越低;當(dāng)壓力由0.1MPa增大到0.39MPa,煙道氣與正己烷摩爾分?jǐn)?shù)比為1:3時(shí),表面張力由21.61 mN/m降低到12.24mN/m,降低了43.36%;當(dāng)煙道氣與正己烷摩爾分?jǐn)?shù)比為1:1時(shí),表面張力由21.83 mN/m降低到13.48mN/m,降低了38.25%;當(dāng)煙道氣與正己烷摩爾分?jǐn)?shù)比為3:1時(shí),表面張力由22.28 mN/m降低到15.58mN/m,降低了30.07%。由圖8可見:煙道氣與正己烷混合氣體中溶劑對降低表面張力起到主導(dǎo)作用。

        圖8120℃時(shí)不同比例煙道氣+正己烷混合氣體與稠油表面張力變化曲線


        3結(jié)論

        1)氣體與稠油動(dòng)態(tài)表面張力測定分為2個(gè)階段:第1個(gè)階段為氣體向稠油中溶解、擴(kuò)散的波動(dòng)階段,第2個(gè)階段為平衡階段。

        2)當(dāng)壓力一定時(shí),溫度升高,煙道氣-稠油表面張力降低,正己烷-稠油表面張力則升高。在接近飽和蒸氣壓時(shí),正己烷-稠油表面張力隨溫度的升高而越小。

        3)在實(shí)驗(yàn)壓力范圍(<6 MPa)內(nèi),不同組成的煙道氣-稠油表面張力可以由  N2-稠油表面張力和  CO2-稠油表面張力線性插值得到,相對誤差<3%。

        4)與煙道氣相比,正己烷降低稠油表面張力能力明顯。向煙道氣中加入適量的正己烷,即可大幅度地降低表面張力。



        <label id="49scj"><menuitem id="49scj"></menuitem></label>
        <del id="49scj"><dl id="49scj"></dl></del>
        <th id="49scj"></th>

      1. <b id="49scj"><abbr id="49scj"></abbr></b>
        <kbd id="49scj"><form id="49scj"></form></kbd>

        1. <th id="49scj"><progress id="49scj"></progress></th>
            色男人男人天堂 | 日韩一级片视频 | 日本一级片免费观看 | 亚洲综合在线视频 | 国产精品传媒秘 麻豆Hd |